

Daintree Electricity Supply Study

Stakeholder Reference Group – Meeting #2

Thursday 12 September 2019

Limitations

This presentation has been prepared at the request of Department of Natural Resources, Mines and Energy (DNRME) in accordance with the terms of KPMG's engagement contract executed 8 May 2019. The services provided under KPMG's engagement contract (the Services) have not been undertaken in accordance with any auditing, review or assurance standards. Any reference to 'audit' and 'review', throughout this presentation, is not intended to convey that the Services have been conducted in accordance with any auditing, review or assurance standards. Further, as KPMG's scope of work does not constitute an audit or review in accordance with any auditing, review or assurance standards. Further, as KPMG's not constitute an audit or review in accordance with any auditing, review or assurance standards, KPMG's work will not necessarily disclose all matters that may be of interest to DNRME or reveal errors and irregularities, if any, in the underlying information.

The responsibility for determining the adequacy or otherwise of our terms of reference is that of DNRME.

In preparing this presentation, KPMG and our subcontractor GHD have had access to information provided by DNRME, and publicly available information. We have relied upon the truth, accuracy and completeness of any information provided or made available to us in connection with the Services without independently verifying it. The publicly available information used in this presentation is current as of the date of this presentation. We do not take any responsibility for updating this information if it becomes out of date.

Any findings or recommendations contained within this presentation are based upon our reasonable professional judgement based on the information that is available from the sources indicated. Should the project elements, external factors and assumptions change then the findings and recommendations contained in this presentation may no longer be appropriate. Accordingly, we do not confirm, underwrite or guarantee that the outcomes referred to in this presentation will be achieved. We assume no obligation to update or otherwise revise this presentation unless requested by DNRME.

We do not make any statement as to whether any forecasts or projections will be achieved, or whether the assumptions and data underlying any such prospective financial information are accurate, complete or reasonable. We will not warrant or guarantee the achievement of any such forecasts or projections. There will usually be differences between forecast or projected and actual results, because events and circumstances frequently do not occur as expected or predicted, and those differences may be material.

Important Notice for Third Parties

This presentation is solely for the purpose set out in Section 1.2 of our final detailed report and for DNRME's information and is not to be used for any other purpose.

If you are a party other than DNRME, KPMG and our subcontractor, GHD:

- owe you no duty (whether in contract or in tort or under statute or otherwise) with respect to or in connection with the attached presentation or any part thereof; and
- will have no liability to you for any loss or damage suffered or costs incurred by you or any other person arising out of or in connection with the provision to you of the attached presentation or any part thereof, however the loss or damage is caused, including, but not limited to, as a result of negligence.

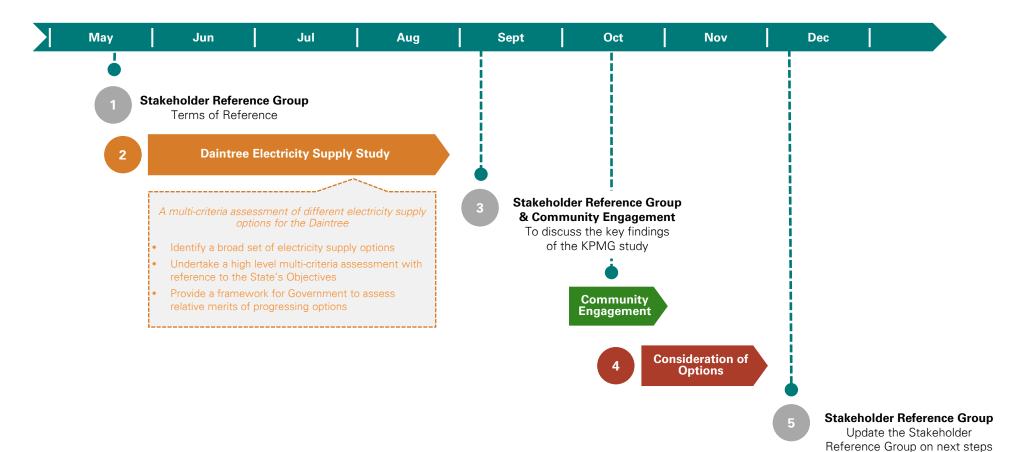
If you are a party other than DNRME and you choose to rely upon the attached presentation or any part thereof, you do so entirely at your own risk. Other than our responsibility to DNRME, neither KPMG nor any member or employee of KPMG or their subcontractor, GHD, undertakes responsibility arising in any way from reliance placed by a third party on this presentation.

This presentation provides a summary of KPMG's findings during the course of the work undertaken for DNRME under the terms of the engagement contract executed 8 May 2019. The contents of this presentation does not represent our conclusive findings, which will only be contained in our final detailed report. This presentation is provided solely for the benefit of the parties identified in the engagement contract and is not to be copied, quoted or referred to in whole or in part without KPMG's prior written consent.

Project Overview

Overview of Methodology and Analysis

Technical Overview of Options




Project Overview

Project Timeline

KPMG

5

Project Objectives

The Government is seeking to identify electricity supply options for the Daintree that:

preserve the natural and cultural heritage values in the region

are fiscally sustainable and/or present a commercial opportunity

promote affordable electricity supply services and greater cost certainty

promote improved environmental outcomes, including carbon and pollution reduction

enhance the standard of living for electricity consumers and enhance associated economic outcomes in the region

promote innovation and knowledge sharing amongst industry participants

engage with and inform stakeholders regarding electricity supply in the region

KPMG

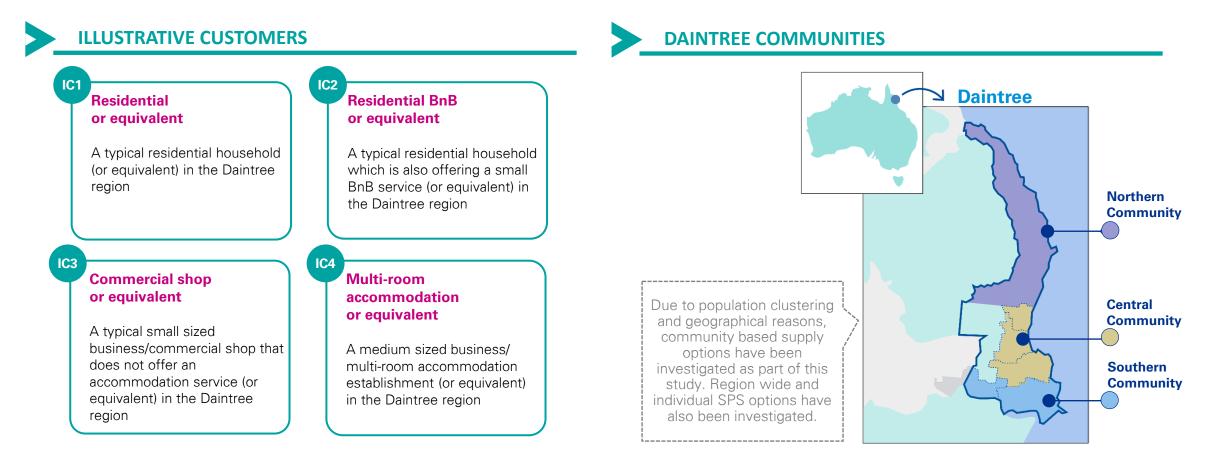
© 2019 KPMG, an Australian partnership and a member firm of the KPMG network of independent member firms affiliated with KPMG International Cooperative ("KPMG International"), a Swiss entity. All rights reserved The KPMG name and logo are registered trademarks or trademarks of KPMG International. Liability limited by a scheme approved under Professional Standards Legislation

The Project Objectives inform, and map to, the evaluation criteria used to evaluate the options.

Project Team

KPMG and GHD were engaged by DNRME to undertake the Daintree Electricity Supply Study in order to identify, evaluate and provide a framework for Government to assess the relative merits of potential electricity supply option(s) for the Daintree that may be the subject of further development.

PROJECT TEAM		ROLE					
SPONSOR	The Department of Natural Resources,	DNRME is the Department charged with informing the Queensland Government's election commitment. DNRME have engaged KPMG (and its subcontractor GHD) to provide robust, independent analysis that enables Government decision making. DNRME has been responsible for setting the study's:					
	Mines and Energy	Purpose	Evaluation Criteria				
		Project Objectives					
		KPMG is one of Australia's leading providers of financial and commercial advice on infrastructure projects. KPMG is the lead coordinating advisor on the Daintree Electricity Supply Study, including providing specialist advice on:					
	KPMG	Options development	Qualitative economic analysis				
		Financial analysis and modelling	Commercial strategy				
ADVISORS		GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources environment, property and buildings, and transportation. GHD has provided specialist advice on:					
	GHD	Electricity demand and requirements	Operational costings				
		Infrastructure planning and costings	 Regulatory and environmental considerations 				

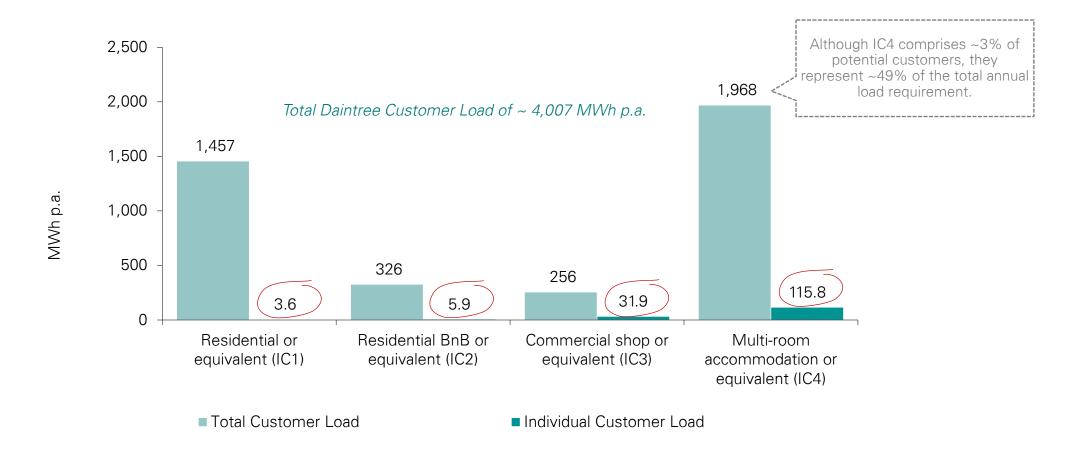


Overview of Methodology and Analysis

Current State - Illustrative Customers and Communities

Illustrative customers have been developed to enable the Daintree community to compare the cost of different options with the cost of existing arrangements (the Current State).

Current State - Estimated Connections (#)


The study is based on an estimated 489 Daintree customers/connections across the 3 communities and 4 Illustrative Customer categories.

TOTAL ESTIMATED DAINTREE CUSTOMERS		CAPE TRIBULATION	THORNTON BEACH	DIWAN	COW BAY	FOREST CREEK	KIMBERLEY		
ILLUSTRATIVE CUSTOMER	ID#	NORTHERN	CENTRAL		SOUTHERN		TOTAL	%TOTAL	
Residential or equivalent	IC1	67	10	98	145	66	23	409	84%
Residential BnB or equivalent	IC2	10	4	15	21	3	2	55	11%
Commercial shop or equivalent	IC3	3	1	1	3	-	-	8	2%
Multi-room accommodation or equivalent	IC4	8	-	6	3	-	-	17	3%
Total		88	15	120	172	69	25	489	100%
Community Total		88			307		94	489	
% Community Total		18%			63%		19%		100%

Current State - Annual Loads

A bottom-up approach has been taken to developing the estimated Illustrative Customer loads and costs.

Current State - Generation Source

Daintree region's total estimated annual electricity load has been assumed to comprise of a combination of solar PV, diesel generation and battery storage.

	IC1	IC2	IC3	IC4	
GENERATION SOURCE		IC TOTAL	. (MWH)		TOTAL (MWI
Solar PV	619	129	5	48	8
Generator	838	197	237	1,814	3,0
Back-up Generator	-	-	14	106	1
Battery	-	-	-	-	
Total	1,457	326	256	1,968	4,0
GENERATION SOURCE		% TOTAL			
Solar PV	42%	40%	2%	2%	20
Generator	58%	60%	93%	92%	77
Back-up Generator	-	-	5%	5%	3
Battery	-	-	-	-	
Total	100%	100%	100%	100%	100

Cooking and water heating has been excluded from the load estimates: Based on the Compass Research of a sample of 100 households and businesses, 99% used gas for cooking and 75% used gas for water heating. As a result, it has been assumed that all Illustrative Customers use gas (LPG) for cooking and water heating purposes. It has also been assumed that gas appliances and hot water systems will not be replaced by electric units under each of the electricity supply options given it is unlikely to make financial sense.

(MWH)

800

120

3,087

4,007

20%

77%

3%

100%

Back-up

generators are

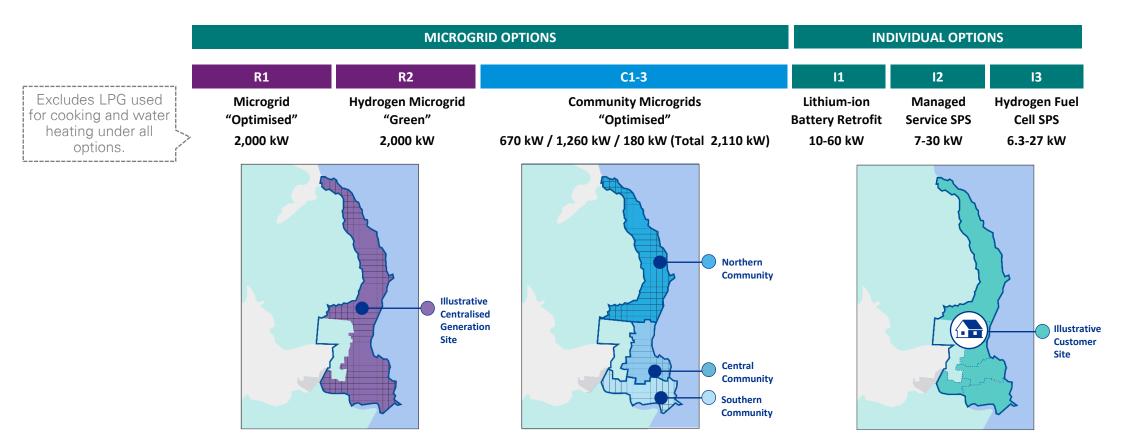
assumed to

primarily be

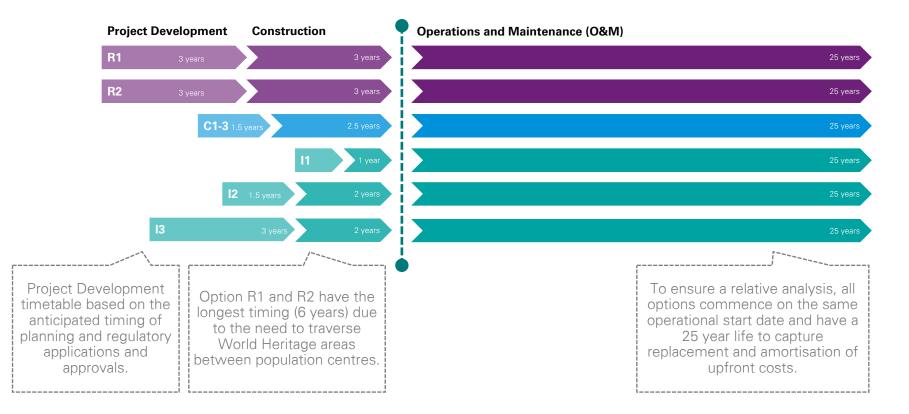
non-operational

for residential

Illustrative


Customers (IC1

and IC2).


The six options analysed as part of this study, comprising three microgrid based options and three individual SPS based options, include a combination of established (e.g. solar and diesel generators) and emerging technologies (e.g. hydrogen and lithium-ion battery storage).

Project Life and Costings

To enable a relative financial assessment of options, all options pivot off the same operations and maintenance start date. Costs that inform the financial assessment include all upfront and ongoing costs.

Study Limitations

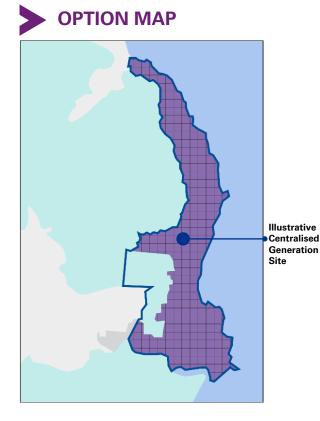
The analysis and conclusions contained within the study are limited in part by a number of factors.

Demographic/customer data: The Daintree community is remote and, as such, there are inherent limitations in the demographic/customer data available.

Detailed information about resident's present energy systems: Information from previous surveys has been used as a guide to the size, configuration and age of energy systems that are presently utilised by Daintree residents. However this information is limited and in some cases changes may have occurred since the survey was performed.

Predictions of uptake rates for new supply options by residents: Uptake rates for new supply options by residents will depend on many factors including cost of energy, cost of connection, age of existing systems, the compatibility of the residences with being connected to the supply system, attitude of residents to the systems that will be available, reliability and security, and availability of support. As such, uptake rates may not match forecast or assumed levels.

Regulatory and approval requirements: The level of regulatory approvals and permitting requirements will be largely dictated by options and sitespecific factors that cannot be taken into account at this stage. The level of supporting information required for regulatory approvals and permits, and the assessment timeframe periods for these, vary widely. The regulatory framework for some options, e.g. microgrids, does not currently exist which introduces an additional level of uncertainty for delivery.


Technical Overview of Options

R1 - Optimised Microgrid

This option involves the construction of an underground electricity microgrid that would service the entire Daintree region. The microgrid would be powered by a centralised generation site that would involve a combination of solar PV and diesel generation paired with lithium-ion battery storage.

This option is based on the most efficient and proven electricity supply technology.

OPTION ASSUMPTIONS

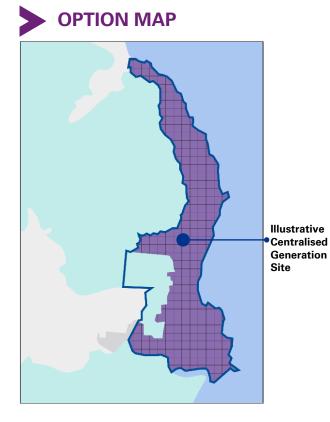
ГҮРЕ	ІТЕМ	ASSUMPTION
ш	Solar PV	2,000 kW
Diesel Gener Lithium-ion B System Conv	Diesel Generators	3 x 500 kW
	Lithium-ion Battery Storage	3,000 kWh
SY RCHI	System Converter	1,000 kW
A	Total Capacity	2,000 kW
	Cabling (Total HV and LV)	160 km
C	Land Requirement	20,000 m ²
OTHER	Project Development	3 years
OTI	Construction	3 years
	Operating	25 years
	Carbon Intensity (kgCO2e/kWh supplied)	0.219

Solar PV Farm

1	2

Diesel Generators

Lithium-ion Battery Storage



R2 - Hydrogen Based Microgrid

As per Option R1 however the generation site would contain a large scale solar PV farm whose electricity would be harnessed for the electrolysis of water to produce hydrogen, and to provide energy directly to customers during daylight hours. The hydrogen produced by the electrolysers would be contained within storage and fed into a centralised hydrogen fuelled gas turbine to generate electricity which would be distributed through the underground microgrid network.

This option is designed to be "100% green" however has fossil fuel back-up to ensure reliability and security of supply.

OPTION ASSUMPTIONS

ГҮРЕ	ITEM	ASSUMPTION
	Solar PV	7,000 kW
	Electrolyser	5 x 1,250kW
JRE	Hydrogen Storage	1,530kg (3 days)
IEM	Lithium-ion Battery Storage	333 kWh
SYSTEM ARCHITECTURE	System Converter	1,000 kW
ARC	Hydrogen Gas Turbine	1,000 kW
	Diesel Generator	2,000 kW
	Total Capacity	2,000 kW
	Cabling (Total HV and LV)	160 km
	Land Requirement	70,000 m ²
OTHER	Project Development	3 years
OTF	Construction	3 years
	Operating	25 years
	Carbon Intensity (kgCO2e/kWh supplied)	0

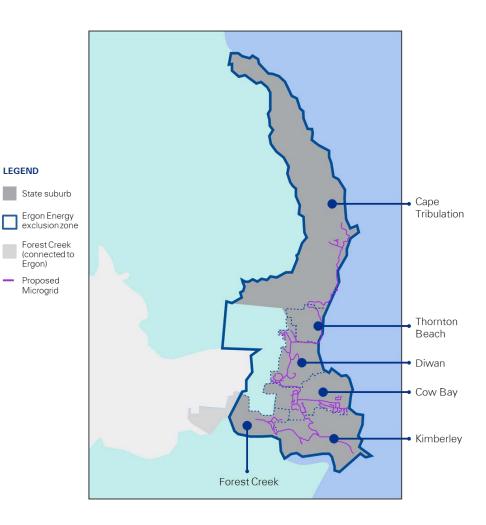
Solar PV Farm Hydrogen Fuelled Turbine Electrolyser Hydrogen

OPTION FEATURES

Lithium-ion Battery Storage

Diesel Generators

Storage

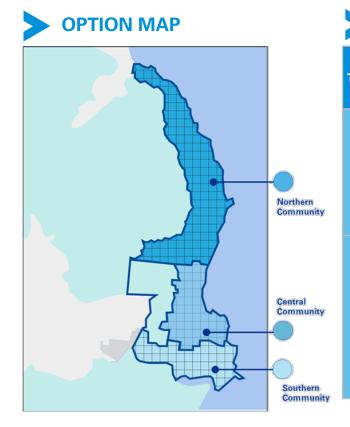


R1 and R2 - Proposed Microgrid

The central generation facility will connect to a high voltage underground network to distribute electricity to the population centres where it will be transformed to low voltage as required

Customers' energy usage will be metered at their point of supply

The microgrid follows the existing road network to minimise any additional impact on the environment



C1-3 - Community Microgrids

This option involves construction of three underground electricity microgrids that would service the northern, central and southern communities of the Daintree. The microgrids would be powered by three individual centralised generation sites that would involve a combination of solar and diesel generation paired with lithium-ion battery storage.

These options are based on the most efficient and proven electricity supply technology.

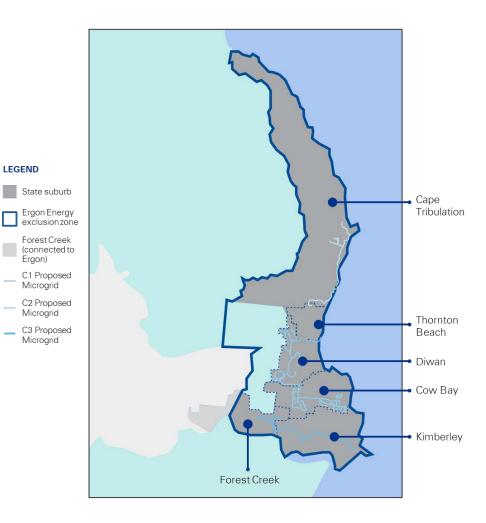
OPTION ASSUMPTIONS

YPE	ITEM	ASSUMPTION BY COMMUNITY						
TPE	I I EIVI	NORTHERN	CENTRAL	SOUTHERN				
ш	Solar PV	800 kW	1,000 kW	100 kW				
SYSTEM ARCHITECTURE	Diesel Generators	3 x 135 kW	3 x 230 kW	3 x 40 kW				
/STE ITEC	Lithium-ion Battery Storage	1,000 kWh	2,500 kWh	300 kWh				
S) RCH	System Converter	400 kW	800 kW	100 kW				
AF	Total Capacity	670 kW	1,260 kW	180 kW				
	Cabling	30 km	40 km	60 km				
	Land Requirement	10,000 m ²	10,000 m ²	5,000 m ²				
EB	Project Development	1.5 years	1.5 years	1.5 years				
OTHER	Construction	2.5 years	2.5 years	2.5 years				
	Operating	25 years	25 years	25 years				
	Carbon Intensity (kgCO2e/kWh supplied)	0.178	0.150	0.442				

Solar PV Farm

Diesel Generators

Lithium-ion Battery Storage

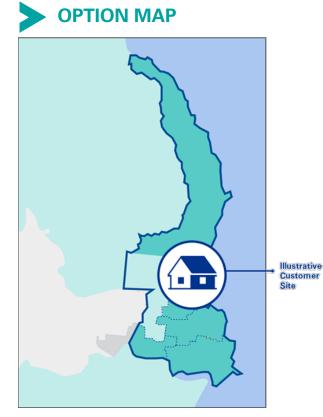


C1-3 - Proposed Microgrids

Central generation facilities will connect to a high voltage underground network to distribute electricity to the population centres where it will be transformed to low voltage as required

Customers' energy usage will be metered at their point of supply

The map to the right is similar to Option R1 and R2 and follows the existing road network, but excludes connections between population centres



11 - SPS Battery Retrofit

This option involves installation of individual lithium-ion batteries at customers' dwellings that would be an addition to their current SPSs. This option is intended to improve the efficiency of customers' current solutions. This option currently only applies to IC1 and IC2 as it is assumed that IC3 and IC4 do not have battery storage, however in reality, Option I1 does not preclude these customers from accessing the option.

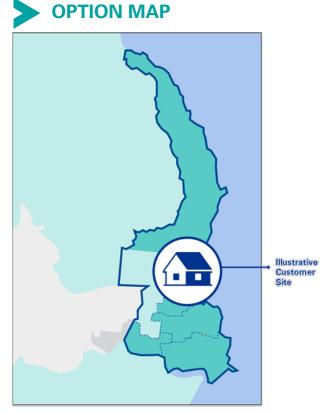
This option is an incremental enhancement to existing SPSs.

OPTION ASSUMPTIONS

YPE	ІТЕМ	ASSUMPTION						
TFE		IC1	IC2	IC3	IC4			
ш	Existing: Solar PV	3.2 kW	5 kW	1 kW	5 kW			
SYSTEM ARCHITECTURE	Existing: Diesel Generators	5 kW	7.5 kW	2x10 kW	2x30 kW			
/STE ITEC	New: Lithium-ion Battery Storage	16 kWh	31 kWh	0 kWh	0 kWh			
S) RCH	Existing: System Converter	5 kW	5 kW	5 kW	5 kW			
◄	Total Capacity	10 kW	12.5 kW	20 kW	60 kW			
	Enclosure	×	×	×	×			
	Land Requirement	n/a (existing premises)						
£	Project Development	1 years						
OTHER	Construction	1 years						
	Operating				25 years			
	Carbon Intensity (kgCO2e/kWh supplied)	0.567	0.530	0.925	0.883			

Existing: Solar PV

Existing: Diesel Generator


New: Lithium-ion Battery Storage

12 - Standardised SPS

This option involves the development of standardised SPSs that are managed and maintained by a central organisation/authority. Customers would pay a standard charge for services and electricity. Each SPS would involve a level of solar PV and diesel generation paired with lithium-ion battery storage.

This option will improve reliability and security, and smooth costs, through a managed service provider.

OPTION ASSUMPTIONS

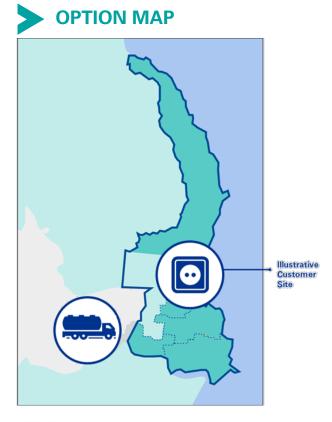
YPE	ITEM	ASSUMPTION						
IFE		IC1	IC2	IC3	IC4			
ш	Solar PV	2.5 kW	5 kW	5 kW	10 kW			
SYSTEM ARCHITECTURE	Generators (diesel)	1x7 kW	1x10 kW	1x15 kW	1x30 kW			
	Battery Storage (lithium-ion)	25 kWh	40 kWh	225 kWh	750 kWh			
S) RCH	System Converter	2.5 kW	5 kW	50 kW	50 kW			
AF	Total Capacity	7 kW	10 kW	15 kW	30 kW			
	Enclosure	✓	\checkmark	\checkmark	✓			
	Land Requirement	50 m ² (existing premises)						
Ë	Project Development	1.5 years						
OTHER	Construction	2 years						
	Operating				25 years			
	Carbon Intensity (kgCO2e/kWh supplied)	0.630	0.564	0.856	0.853			

SPS Enclosure

Solar PV

Lithium-ion Battery Storage

Diesel Generator

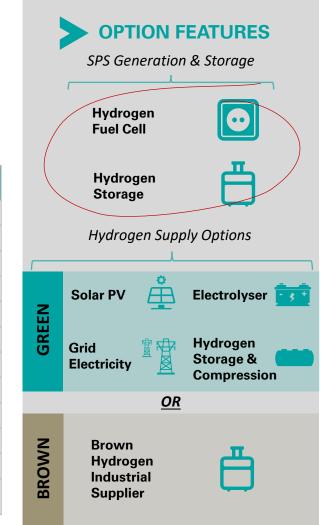


KPMG

13 - Hydrogen SPS

This option involves individual hydrogen fuel cells at customers' dwellings that would replace their current SPSs. Three options to source green or brown hydrogen fuel have been explored through the study given supply at the residential level is not established in Australia.

This option may be an example of the right long term solution for the Daintree as the hydrogen sector and technology continues to develop and mature over coming years.



OPTION ASSUMPTIONS

YPE	ІТЕМ			AS	SUMPTION	
	Hydrogen Fuel Cell –	IC1	IC2	IC3	IC4	
OTHER ARCHITECTURE	unit size per customer	6.3 kW	9.0 kW	13.5 kW	27.0 kW	
		Optio	n 13.1: 1.25 N	MW electroly:	ser in Cairns	
	Hydrogen Fuel	Option I3.2: 10 MW electrolyser in Townsville				
		Option I3.3: Brown hydrogen from Newcastle				
	Hydrogen Transportation		gen via truck			
	Enclosure	×				
	Land Requirement	25 m ² (existing premises)				
ER	Project Development	3 years				
OTHER	Construction	2 years				
	Operating	25 years				
	Carbon Intensity (kgCO2e/kWh supplied)	0 kgCO2e/kWh supplied/				

^ Fuel cell power generation; fuel carbon footprint depends on source

© 2019 KPMG, an Australian partnership and a member firm of the KPMG network of independent member firms affiliated with KPMG International Cooperative ("KPMG International"), a Swiss entity. All rights reserved. The KPMG name and logo are registered trademarks or trademarks of KPMG International. Liability limited by a scheme approved under Professional Standards Legislation.

KPMG

Evaluation of Options

Evaluation Criteria

The evaluation criteria used for the evaluation of the options was developed with reference to the Government's Project Objectives. The Current State was also assessed to inform a baseline to compare options.

NO	CRITERION	DESCRIPTION			
1	Natural and Cultural Heritage	The ability of the option to preserve the natural and cultural heritage values in the region and limit cumulative/indirect impacts on these values into the future.			
2	Financial	The estimated levelised cost of the option and the ability of the option to provide cost certainty for consumers.			
3	Environmental	The ability of the option to reduce carbon emissions and pollution.			
4	Reliability and Security of Supply	The ability of the option to provide ongoing reliability of supply (capacity to meet peak demand) and security of supply (operating within the range of acceptable limits and ability to withstand faults) that will meet or exceed the status quo.		Formal, fixed weightings ha been applied to the Evaluation Rather, evaluation criteria ha individually assessed and sco	
5	Economic	The ability of the option to deliver incremental economic benefits to the region.		then KPMG and GHD ha informed, consensus	
6	Learning and InnovationThe ability of the option to provide a level of innovation to support Queensland's transition to a low carbon economy, including facilitating skills development for new technology.			 overall score and relative each option against the criteria as a guide to DN further consideration of 	
7	Technical and Commercial Implementation Risk	The certainty of the option in terms of technical implementation risk (delivering the upgraded services in the anticipated timeframes and managing disruption and integration risk) and commercial implementation risk (the complexity, flexibility and certainty of the commercial framework).		further consideration of	

1. Natural and Cultural Heritage

KEY ANALYSIS

• Planning and Regulatory

Risk

The ability of the option to preserve the natural and cultural heritage values in the region and limit cumulative/indirect impacts on these values into the future.

NO	R1	R2	C1-3	l1	12		13	CURRENT STATE
1	Low/Medium	Low/Medium	Medium	High	High		High	High
	REGIONAL MIC R1-R2		CO	VIMUNITY MICROGRI C1-3	DS			D SOLUTIONS 1-I3
 Like con Like bus loca bea 	ely to encourage develo nsidered to have the gre ely to see increased pre ses) on existing infrastr	ge values of the region. opment which is eatest impact. essure (e.g. cars, ucture, facilities and on (e.g. roads, bridges,	Options R1 required in t	relatively better in cor and R2 given construc he sensitive Wet Tropic a between population	tion is not cs World	a ti r	accelerating developm to have the most sign natural and cultural he Impacts are primarily s	site and property specific hrough normal Douglas codes, planning

Refer next slide for annual levelised cost outcomes

KEY ANALYSIS

- Financial
- Risk

The estimated levelised cost of the option and the ability of the option to provide cost certainty for consumers.

NO	R1	R2	C1-3	11	12	2	13	CURRENT STATE
2	Low/Medium	Low	Low/Medium	Medium	Medi	ium	Medium	
	REGIONAL MICR R1-R2	OGRIDS	COMMUI	NITY MICROGRIDS C1-3			SPS BASED SO I1-I3	LUTIONS
leve (IC1	tions R1 and R2 have t elised cost, and for a ty 1), these solutions repre	oical household esent a	-	the third highest leve icantly higher cost tha rangements.		\$1,50	on I1 has the lowest level D0 per annum higher than C2 (IC3 and IC4 are not ap	the Current State for IC1
 significantly higher cost than current supply arrangements, costing around \$11,000 to \$14,000 more on an annual basis. The options present a medium/high cost certainty risk due to potential construction 			Options R1 and install undergrout	lower cost certainty ri R2 due to not having nd cabling in the sensi en the population cen	:o tive	than than and p	on l2 has a levelised cost the microgrid options, but Option l1. The solution ca provide a greater level of c dardisation relative to Curr	is still materially higher an be externally managed onsistency and
	t overruns and uncertai erational management c	v v				than than cost	on I3 has a levelised cost the microgrid options, but the Current State and rep certainty risk due to the en nology.	is still materially higher resents a medium/high

KPMG

Levelised Cost Analysis

The levelised cost is used to assess and compare the alternative options, and takes into account all upfront and ongoing costs through a unitised "levelised" cost. It can be thought of as the average annual cost of all costs over the life of the project.

	ILLUSTRATIVE CUSTOMER	IC1	IC2	IC3	IC4	
	ASSUMED LOAD (KWH P.A.)	3,561	5,934	31,945	115,790	
	Total Weighted Levelised Cost (\$ p.a.)					
Annual	Current State	2,064	3,321	11,290	38,787	
levelised costs are	Option R1	12,983	21,633	116,453	422,109	Upfront cos
veighted by sumed load	Option R2	16,166	26,937	145,007	525,608	the Current
i	Option C1-3	16,717	19,135	74,157	278,075	have be assumed t
	Option C1	10,133	16,884	90,891	329,454	sunk cos
	Option C2	7,148	11,911	64,117	232,405	
	Option C3	48,875	81,436	-	-	
	Option I1	2,728	4,799	-	-	
	Option I2	5,832	8,053	34,418	100,907	
	Option I3.1 ("Green Hydrogen" from Cairns)	7,372	10,781	21,774	53,690	
	Option I3.2 ("Green Hydrogen" from Townsville)	7,415	10,852	22,154	55,065	
	Option I3.3 ("Brown Hydrogen" from Newcastle)	7,933	11,716	26,806	71,928	

KEY ANALYSIS

Environmental

•

3. Environmental

The ability of the option to reduce carbon emissions and pollution.

NO	R1	R2	C1-3	l1	12	13	CURRENT STATE
3	Medium	High	Medium/High	Low/Medium	Low/Medium	High	Low
	MICROGF R1	RIDS C1-3	HYD R2	ROGEN BASED OPTI	ONS I3		D SOLUTIONS 11-12
 tha exis the The at a Noi the pos 	crogrid options are get n individual SPSs becau sts between multiple cu e overall total peak dema are will be improved abi a central generation faci ise of generation can be facility away from popular ssible and providing good generation housing.	use the diversity that ustomer loads reduces and. lity to control any spills lity. e managed by placing ulation as much as	provide supp carbon emis • Option R2 h hydrogen" a • Option I3 hy	pased options are des oly to the Daintree with sions. hydrogen fuel will be "g is it is produced from s ydrogen fuel also has t ee through the use of	n minimal green solar PV. he potential to		

4. Reliability and Security of Supply

KEY ANALYSIS

Technical

Risk

The ability of the option to provide ongoing reliability of supply (capacity to meet peak demand) and security of supply (operating within the range of acceptable limits and ability to withstand faults) that will meet or exceed the status quo.

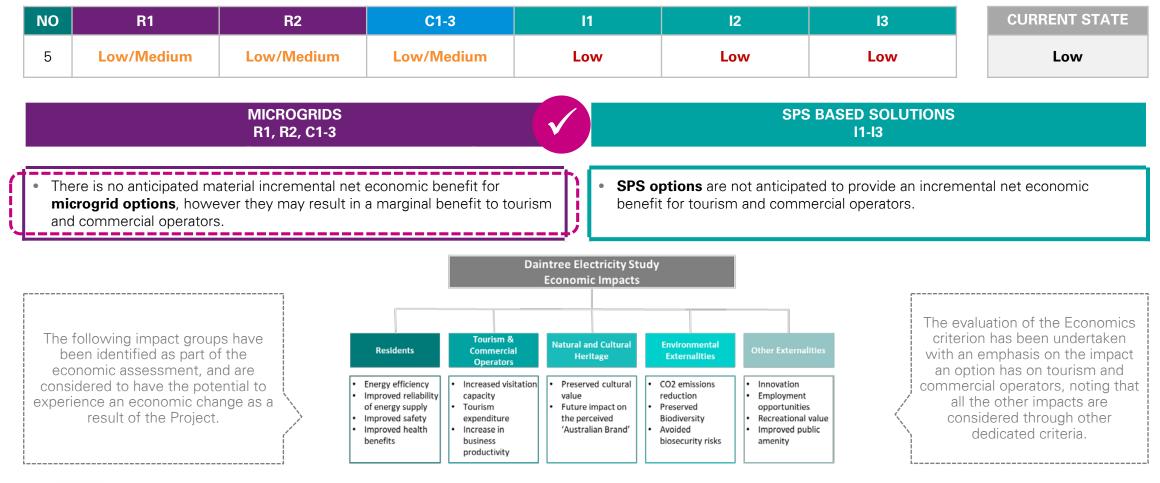
NO	R1	R2	C1-3	l1	12	13	CURRENT STATE
4	Medium/High	Medium/High	Medium/High	Medium	High	Medium/High	Medium

ALL OPTIONS

 All Options will result in an improvement in reliability and security of supply compared with the Current State apart from Option I1 which is an incremental enhancement.

• **Option I2** will provide a very high level of reliability and security as each customer will have a separate energy system to provide supply. Any failure will impact only one customer whereas a failure in a microgrid will likely impact a group of customers.

KEY ANALYSIS


Economic

•

5. Economic

KPMG

The ability of the option to deliver incremental economic benefits to the region.

6. Learning and Innovation

KEY ANALYSIS

Technical

•

Planning and Regulatory

The ability of the option to provide a level of innovation to support Queensland's transition to a low carbon economy, including facilitating skills development for new technology.

NO	R1	R2	C1-3	l1	12	13	CURRENT STATE
6	Medium	Medium/High	Medium	Low	Low/Medium	High	Low
		MICROGRIDS R1, R2, C1-3			SPS	BASED SOLUTIONS	
pro • A n	vide substantial indust nicrogrid of this type w	de an opportunity to de ry learnings. rould be used as a case review of SPSs, specific	study, including in rela	tech in Q ation ns. Opt i	ieensland. on I2 would be used as a	d similar schemes have a case study in relation	opportunities given the e already been put in place to the AEMC's Priority 2
	tion R2 scores slightly ctrolysis technology.	higher due to the deplo	oyment of hydrogen	• Opti	w of SPSs, specifically C on 13 uptake of cutting e e first of its kind in the w	dge technology in a un	ique location would be one tralia.

7. Technical and Commercial Implementation Risk

KEY ANALYSIS

- Technical
- Planning and Regulatory
- Risk

The certainty of the option in terms of technical implementation risk (delivering the upgraded services in the anticipated timeframes and managing disruption and integration risk) and commercial implementation risk (the complexity, flexibility and certainty of the commercial framework).

NO	R1	R2	C1-3	11	12		13	CURRENT STATE		
7	Low	Low	Low/Medium	High	Medium/High	h	Low/Medium	High		
		L MICROGRIDS R1-R2		COMMUNITY MICR C1-3	OGRIDS	SPS BASED SOLUTIONS I1-I3				
-	otions R1 and R2 are hi High demand and coun Complex and high leve requirements	iterparty risk of the cus	stomer base ri roval d	Compared with Options isk is reduced to Mediu option does not have to lifficult terrain and sens	m/High as this traverse more itive Wet	er su	hancement to existin	exist for options such as		
-	Complexity of deliverin Tropics World Heritage Risk of establishing a s customer.	Area	n the Wet p	ropics World Heritage oopulation centres (i.e. p egulatory, and delivery educed).	lanning and	hc im	ption 12 - Based on es pwever demand and c ppact the bankability c perator without Gover	of this option for an		
• Op	otion R1 generation tec otion R2 has greater ge w hydrogen technology I diesel generator redur	neration technology ris	sk due to	All other risks as per Op	tion R1.	• OI th int		fuel cell technology and n market is still in its ory framework is		

КРМС

Assessment Summary

The table below provides a summary of the criterion and overall rating for each option.

NO	CRITERION	R1	R2	C1-3	11	12	13	CURRENT STATE
1	Natural and Cultural Heritage	Low/Medium	Low/Medium	Medium	High	High	High	High
2	Financial	Low/Medium	Low	Low/Medium	Medium	Medium	Low/Medium	Medium
3	Environmental	Medium	High	Medium/High	Low/Medium	Low/Medium	High	Low
4	Reliability and Security of Supply	Medium/High	Medium/High	Medium/High	Medium	High	Medium/High	Medium
5	Economic	Low/Medium	Low/Medium	Low/Medium	Low	Low	Low	Low
6	Learning and Innovation	Medium	Medium/High	Medium	Low	Low/Medium	High	Low
7	Technical and Commercial Implementation Risk	Low	Low	Low/Medium	High	Medium/High	Low/Medium	High

Assessment Sum	mary	Low	Low	Low/Medium	Medium/High	Medium	Medium/High		Medium
KPMG	© 2019 KPMG, an Australian partnership and a member firm of the KPMG network of independent member firms affiliated with KPMG International Cooperative ("KPMG International"), a Swiss entity. All rights reserved. The KPMG name and logo are registered trademarks or trademarks of KPMG International. Liability limited by a scheme approved under Professional Standards Legislation.								35

Conclusions

Conclusions

At this time, no one option satisfies all of the Government's objectives for the Daintree region. However, the evaluation suggests that some of the options have a relatively higher degree of alignment with the Government's objectives, and that these could be further considered and developed.

MICROGRID BASED SOLUTIONS DO NOT APPEAR TO BE THE RIGHT LONG TERM SOLUTION FOR THE DAINTREE

- A microgrid would supply residents with a reliable and secure energy network, however it presents numerous technical and commercial risks and is likely to be financially unviable without significant upfront and ongoing Government support.
- The microgrid options annually cost between \$11,000 and \$15,000 more per residential customer or, conversely, a subsidy of between \$70 million and \$150 million would be required to preserve customers' current electricity costs.
- A microgrid **presents varying levels of risk to the natural and cultural heritage values of the region,** requires a high level of regulatory approvals and design work and is expected to comprise a six year development and construction timetable.

SPS BASED SOLUTIONS ALLOW FOR INCREMENTAL STAGED ENHANCEMENT AND REPLACEMENT OVER TIME

- Relative to a microgrid, SPS based solutions better preserve the existing natural and cultural heritage values of the Daintree.
- However, there are limited short term solutions to materially improve existing arrangements, but opportunities could exist for incremental enhancements (e.g. battery upgrade program) while other potential long term solutions are investigated and potentially relevant technologies mature (e.g. hydrogen based SPS, displacing diesel).
- The SPS based solutions annually cost between \$700 and \$6,000 more per residential customer than current supply arrangements.

A3 Handout

Daintree Electricity Supply Study

CURRENT STATE

Illustrative customers have been developed to enable the Daintree community to compare the cost of options to the Current State

IC3

Residential IC1

or equivalent A typical residential household (or equivalent) in the Daintree region

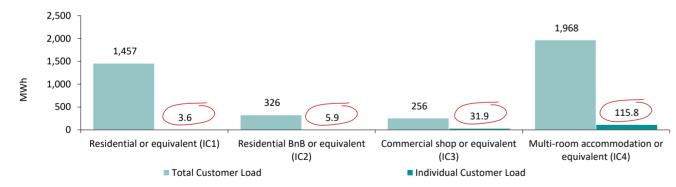
A typical residential household which is also offering a small BnB service (or equivalent) in the Daintree region

Commercial shop or

equivalent A typical small sized business/commercial shop that does not offer an accommodation service (or equivalent) in the Daintree region

IC4

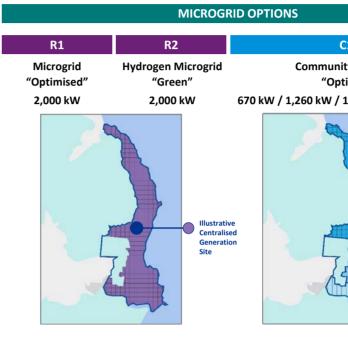
Multi-room accommodation or equivalent


A medium sized business/multiroom accommodation establishment (or equivalent) in the Daintree region

DAINTREE CUSTOMERS - ESTIMATED CONNECTIONS (#)

TOTAL ESTIMATED DAINTREE CUST	romers	CAPE TRIBULATION	THORNTON BEACH	DIWAN	соw ваү	FOREST CREEK	KIMBERLEY		
ILLUSTRATIVE CUSTOMER	ID#	NORTHERN		CENTRAL		SOUT	HERN	TOTAL	% TOTAL
Residential [^]	IC1	67	10	98	145	66	23	409	84%
Residential BnB [^]	IC2	10	4	15	21	3	2	55	11%
Commercial shop [^]	IC3	3	1	1	3	-	-	8	2%
Multi-room accommodation^	IC4	8	-	6	3	-	-	17	3%
Total		88	15	120	172	69	25	489	100%
Community Total		88			307		94	489	
% Community Total		18%			63%		19%		100%

^Or equivalent


DAINTREE CUSTOMERS – ANNUAL LOADS (MWH)

ILLUSTRATIVE	NORTHERN COMMUNITY	CENTRAL COMMUNITY	SOUTHERN COMMUNITY	TOTAL REGION	TOTAL
CUSTOMER		M	vн		%
IC1	239	901	317	1,457	36%
IC2	59	237	30	326	8%
IC3	96	160	-	256	6%
IC4	926	1,042	-	1,968	49%
Total	1,320	2,340	347	4,007	100%
% Total	33%	58%	9%	100%	

OPTIONS

The six options analysed as part of this study, comprising three microgrid based options and three individual SPS based options, include a combination of established (e.g. solar and diesel generators) and emerging technologies (e.g. hydrogen and lithium-ion battery storage)

		MI	CROGRID OPTIONS					INDIV	/IDUAL	ΟΡΤΙΟ	ONS	
	R	L R2		C1-3			11		12			3
	Micro Optim		-	nity Microgrids Dtimised"			hium-i ery Ret		Mana Service	-	-	rogen Cell SPS
	2,000				2,110 kW		0-60 kV		7-30			27 kW
			Illustrative Centralised Generation Site		Northern Community Central Community Southern Community						2	Illustrativ Customer Site
	#	DESCRIPTION*			GRID**	SOLAR PV	DIESEL GENERATOR	HYDROGEN GAS TURBINE	LITHIUM-ION BATTERY	HYDROGEN FUEL CELL	ELECTROLYSER	HYDROGEN STORAGE
					·	CENT	FRALISE	D GENE	RATION	& STOR	AGE	
VAL	R1		all customers. Centralised genera nd proven electricity supply techn	-	~	Ê						
REGIONAL	R2	A single microgrid as per Optic away from fossil fuel generation	on R1 but using hydrogen fuel ger on.^	neration to move	~	Ê		Ç			<u></u>	
						CENT	TRALISE	D GENE	RATION	& STOR	AGE	
			cting all customers in the Norther eration and storage based on mos	-	~	Ě						
COMMUNITY	C1-3		cting all customers in the Central of on and storage based on most effective of the storage based on the storage based based on the storage based		~	Ě						
COMIN			cting all customers in the Souther on and storage based on most eff		~	Ě						
							SPS GE	NERATIO	ON & ST	ORAGE		
	11	Fit lithium-ion batteries to customer's existing installations to improve efficiencies and reduce environmental impacts.										
DUAL	12		ovision of standardised power systems to customers that are managed and intained centrally. Customers pay standard charge for services.			Ê						
INDIVIDUAL	13	Installation of individual hydro their current SPS.	stallation of individual hydrogen fuel cells at customer's dwellings that replace									Ē

*Excludes LPG used for cooking and water heating under all options. ** If compatible existing customers could connect their systems to the microgrid. ^ A diesel generator has been included to act as a backup should a failure in the hydrogen production or generation system occur. ^^Existing SPS component.

Daintree Electricity Supply Study

EVALUATION CRITERIA

The evaluation criteria used for the evaluation of options was developed with reference to the Government's Project Objectives.

Technical and Commercial mplementation Risk

5

Wet Tropics World Heritage

PLANNING AND REGULATORY ANALYSIS

The study area encompasses multiple tenures where development is subject to a wide variety of regulatory aspects. The various suburbs in the study area are separated by significant areas of conservation reserves, with the majority of this being the Wet Tropics World Heritage Area which includes the Daintree National Park.

> Timing of planning and regulatory approvals will depend on the option progressed. Options R1 and R2 are likely impact assessable for EPBC and WTMA permits. Option C1-3 will be dependent on level of supporting information requirements and level of assessment required, which may be up to 18 months

Options I1 to I3 are subject to local government planning laws and building codes (where applicable).

Long timeframe for assessments and requires high level of supporting information/studies, e.g. EIS level of assessment Complex integrated assessment for Development Applications with multiple agencies and specialised requirements State assessment timeframes. May require some specialised studies e.g. Protected Flora Surveys and Clearing Permits No regulatory permits required, may require Council development and building approvals and/or referral to WTMA for conditions on Development Application (DA)

	Biodiversity Conservation Act 1999 Referral Wet Tropics Management Plan 1998 permit Fisheries Act 1994 Vegetation Management Act 1999 Nature Conservation Act 1992 Nature Conservation Act 1992 Planning Act 2016 Land Act 1994 Douglas Shire Council Planning Scheme, Local	STAKEHOLDER ENTITY	STATE / FEDERAL	EST. TIMING OF			ΟΡΤΙΟ	N		
			/ LOCAL	APPLICATION & APPROVAL	R1	R2	C1-3	11	12	13
	,	Department of the Environment and Energy (DEE)	Federal	12 to 36 months						
		Wet Tropics Management Authority (WTMA)	State/Federal	Concurrent with EPBC Referral						
	Fisheries Act 1994	Department of Agriculture and Fisheries (DAF)	State	6 to 18 months Concurrent with DA						
		Department of Natural Resources, Mines and Energy (DNRME)	State	6 to 18 months Concurrent with DA						
A range of further State assessment		Department of Environment and Science (DES)	State	12 to 18 weeks						
State assessment approvals would be triggered for nicrogrid options under the		Department of Environment and Science (DES) and Queensland Parks and Wildlife Service (QPWS)	State	18 to 36 months						
Planning Act 2016 Development Application	Planning Act 2016	Department of State Development, Manufacturing, Infrastructure and Planning	State	9 to 18 months Up to 36 months if WTWHA and EPBC requirements to be integrated.						
	Land Act 1994	Department of Natural Resources, Mines and Energy (DNRME)	State	6 to 12 months Concurrent with DA						
	0	Douglas Shire Council	Local government	6 to 12 months						
	Electricity Act 1994	Department of Natural Resources, Mines and Energy (DNRME)	State	6 to 12 months						
	Total Anticipated Timing			Up to 3 years	Up t vear		Up to 18 months	Up to mon		

FINANCIAL ANALYSIS

The levelised cost is used to assess and compare the alternative options, and takes into account all upfront and ongoing costs through a unitised "levelised" cost. It can be thought of as the average annual cost of all costs over the life of the project. All options are higher cost than the Current State.

ILLUSTRATIVE CUSTOMER ASSUMED LOAD (KWH P.A.)		IC1 3,561		IC2	IC3	IC4 115,790
				5,934	31,945	
Total Weighted Levelised	Cost (\$ p.a.)					
Current State		·····	2,064	3,321	11,290	38,787
Option R1	The annual levelise		12,983	21,633	116,453	422,109
Option R2	the regional mice options R1 and R2	broadly	16,166	26,937	145,007	525,608
Option C1-3	ranges between \$ and \$16,000 per a	innum,	16,717	19,135	74,157	278,075
Option C1	which is significant than the Current		10,133	16,884	90,891	329,454
Option C2			7,148	11,911	64,117	232,405
Option C3		48,875		81,436	-	-
Option I1		2,728		4,799	-	-
Option I2		5,832		8,053	34,418	100,907
Option I3.1 ("Green Hydrogen" for Cairns)		7,372		10,781	21,774	53,690
Option I3.2 ("Green Hydrogen" for Townsville)		7,415		10,852	22,154	55,065
Option I3.3 ("Brown Hydrogen" from Newcastle)		7,933		11,716	26,806	71,928

RISK ANALYSIS

Key risks were identified and assessed and partly informed the overall assessment against the corresponding criteria

		R1	R2	C1-3	11	12	13
	AGGREGATED RISK ASSESSMENT	MICROGRID OPTIONS			INDIVIDUAL OPTIONS		
	Natural and Cultural Heritage	Medium - High	Medium - High	Medium - High	> Low	Low	Low
	Financial	Medium - High	High	Medium	Medium	Low - Medium	Medium - High
	Reliability and Security of Supply	Low - Medium	Low - Medium	Low - Medium	Medium	Medium	Medium
	Technical and Commercial Implementation	High	High	Medium High	> Low	Low - Medium	Medium - High

ENVIRONMENTAL ANALYSIS

Microgrid options are generally more efficient than individual SPSs due to the diversity of customer loads. Options with hydrogen do not produce carbon emissions however the customers that are assumed to remain on their existing SPS will produce carbon emissions at existing levels.

Steady State Annual Carbon Emissions

© 2019 KPMG, an Australian partnership and a member firm of the KPMG network of independent member firms affiliated with KPMG International Cooperative ("KPMG International"), a Swiss entity. All rights reserved. Printed in Australia. KPMG and the KPMG logo are registered trademarks of KPMG International. Liability limited by a scheme approved under Professional Standards Legislation.

3

kpmg.com.au

© 2019 KPMG, an Australian partnership and a member firm of the KPMG network of independent member firms affiliated with KPMG International Cooperative ("KPMG International"), a Swiss entity. All rights reserved.

The KPMG name and logo are registered trademarks or trademarks of KPMG International.

Liability limited by a scheme approved under Professional Standards Legislation.

The information contained in this document is of a general nature and is not intended to address the objectives, financial situation or needs of any particular individual or entity. It is provided for information purposes only and does not constitute, nor should it be regarded in any manner whatsoever, as advice and is not intended to influence a person in making a decision, including, if applicable, in relation to any financial product or an interest in a financial product. Although we endeavour to provide accurate and timely information, there can be no guarantee that such information is accurate as of the date it is received or that it will continue to be accurate in the future. No one should act on such information without appropriate professional advice after a thorough examination of the particular situation.

To the extent permissible by law, KPMG and its associated entities shall not be liable for any errors, omissions, defects or misrepresentations in the information or for any loss or damage suffered by persons who use or rely on such information (including for reasons of negligence, negligent misstatement or otherwise).